Essential Standards - Grade Level: $4^{\text {th }}$ Grade
Identify the essential standards and the reason(s) each is a priority.

- Endurance: Does the standard provide students with knowledge and skills that are useful beyond a single test or topic/chapter?
- Leverage: Does the standard provide students with the knowledge and skills that will be of value in multiple disciplines?
- Readiness: Does the standard provide students with the knowledge and skills necessary for success in the next grade level?
- Assessment Connected: Will the standard be addressed on upcoming state and national exams?

Follow the example below when entering the Essential Standard:
(Grade Level).(Domain).(Number) - (Standard)
4.NBT.\# - \qquad

Essential Standards	U $\mathbf{0}$ $\mathbf{0}$ $\mathbf{0}$ \mathbf{U}			
4.OA. 3 - Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.	X	X	X	X
4.NBT. 2 - Read and write multi-digit whole numbers using base-ten numerals, number names, and expanded form. Compare two multi-digit numbers based on	X	X	X	X

meanings of the digits in each place, using >, $=$ and < symbols to record the results of comparisons.				
4.NBT.4 - Fluently add and subtract multi-digit whole numbers using the standard algorithm.	X	X	X	X
4.NBT.5-Multiply a whole number of up to four digits by a one-digit whole number, and multiply two two-digit numbers, using strategies based on place value and the properties of operations. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.		X	X	X
4.NBT.6-Find whole-number quotients and remainders with up to four-digit dividends and one-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.		X		X
4.NF.l-Explain why a fraction a/b is equivalent to a fraction (n x a)/(n x b) by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use this principle to recognize and generate equivalent fractions.		X		
4.NF.2 - Compare two fractions with different numerators and different denominators, e.g., by creating common denominators or	X	X		

numerators, or by comparing to a benchmark fractions such as $1 / 2$. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with symbols $>$, $=$, or < and justify the conclusions, e.g., b using a visual fraction model				
4.NF.3C - Add and subtract mixed numbers with like denominators, e.g., by replacing each mixed number with an equivalent, and/or by using properties of operations and the relationship between addition and subtraction.	X	X	X	X
4.NF.3D - Solve word problems involving addition and subtraction of fractions referring to the same whole and having like denominators, e.g., b using visual fraction models and equations to represent the problem	X	X	X	X
4.NF.4a. Understand a fraction a / b as a multiple of $1 / b$. For example, use a visual fraction model to represent $5 / 4$ as the product $5 \times(1 / 4)$, recording the conclusion by the equation $5 / 4=5 \times(1 / 4)$.	X	X	X	x
4.NF.4b. Understand a multiple of a / b as a multiple of $1 / b$, and use this understanding to multiply a fraction by a whole number. For example, use a visual fraction model to express $3 \times(2 / 5)$ as $6 \times(1 / 5)$, recognizing this product as 6/5. (In general, $n \times(a / b)=(n \times a) / b$.)	X	x	x	x

4.MD.6 Measure angles in whole number degrees using a protractor. Sketch angles of specified measure.	x	x	x	x

Number of Priority Standards in Each Domain:

Counting and Cardinality (K Only)	NA
Operations in Algebraic Thinking	1
Numbers and Operations in Base Ten	4
Measurement and Data	1
Geometry	0
Numbers and Operations - Fractions (Grades 3-5)	6

