Standard	Endurance	Leverage	Success Next Level	Success SCReady	
3.NSF. 1 Develop an understanding of fractions (i.e., denominators $2,3,4,6,8,10$) as numbers.	\square	\square	\square	\square	These are our 1st unit: 3.NSF. 1
a. A fraction $1 b$ (called a unit fraction) is the quantity formed by one part when a whole is partitioned into b equal parts;	\checkmark	\square	\checkmark	\checkmark	
b. A fraction $a b$ is the quantity formed by a parts of size $1 b$;	\checkmark	\square	\checkmark	\checkmark	
c. A fraction is a number that can be represented on a number line based on counts of a unit fraction;	\checkmark	\square	\checkmark	\checkmark	
d. A fraction can be represented using set, area, and linear models	\checkmark	\square	\checkmark	\checkmark	
3.NSF. 2 Explain fraction equivalence (i.e., denominators $2,3,4,6,8,10$) by demonstrating an understanding that:	\square	\square	\square	\square	These are our 2nd unit: 3.NSF. 2
a. two fractions are equal if they are the same size, based on the same whole, or at the same point on a number line;	\checkmark	\square	\checkmark	\checkmark	
b. fraction equivalence can be represented using set, area, and linear models;	\checkmark	\square	\checkmark	\checkmark	
c. whole numbers can be written as fractions (e.g., 4=41 and 1=44);	\checkmark	\square	\checkmark	\checkmark	
d. fractions with the same numerator or same denominator can be compared by reasoning about their size based on the same whole.	\checkmark	\square	\checkmark	\checkmark	
3.NSF. 3 Develop an understanding of mixed numbers (i.e., denominators $2,3,4,6,8,10$) as iterations of unit fractions on a number line.	\checkmark	\square	\checkmark	\checkmark	

