Freeport Intermediate
Plan of Action based on Benchmark Data
STAAR Math 8
Week 1

Language Objective:

I can write about and solve problems involving one-variable equations situations, total cost of repaying a loan, slope and y-intercept in proportional and non-proportional situations, direct variation, function representations, scatterplots, transformational geometry, and the Pythagorean Theorem.

Start Date: 2/12/18	Monday February 12	Tuesday February 13	Wednesday February 14	Thursday February 15	Friday February 16		SPED Accommodations: (Shirtum)
Priority TEKS with overall \% BASED ON MOCK STAAR DATA 8.7B-26.77\%, 8.7C-35.61\% 8.3C-39.14\% 8.8C-41.25\% 8.10C-45.62\% 8.12D-50.76\% 8.5G-52.02\% 8.4C-53.37\% 8.5I-53.54\% 8.5D-54.21\% 8.7A-55.72\% 8.2D-57.24\%	Category 3: Volume and Surface Area Students will find the volume of cylinders, cones, and spheres, and the surface area of rectangular prisms, triangular prisms, and cylinders. 8.7A Solve problems involving the volume of cylinders, cones, and spheres. 8.7B- Use previous knowledge of surface area to make connections to the formulas for lateral and total surface area and determine solutions for problems involving	Category 3: Volume and Surface Area Students will find the volume of cylinders, cones, and spheres, and the surface area of rectangular prisms, triangular prisms, and cylinders. 8.7A Solve problems involving the volume of cylinders, cones, and spheres. 8.7B- Use previous knowledge of surface area to make connections to the formulas for lateral and total surface area and determine solutions for problems involving	Category 3: Volume and Surface Area Students will find the volume of cylinders, cones, and spheres, and the surface area of rectangular prisms, triangular prisms, and cylinders. 8.7A Solve problems involving the volume of cylinders, cones, and spheres. 8.7B- Use previous knowledge of surface area to make connections to the formulas for lateral and total surface area and determine solutions for problems involving	Category 3: Volume and Surface Area Students will find the volume of cylinders, cones, and spheres, and the surface area of rectangular prisms, triangular prisms, and cylinders. 8.7A Solve problems involving the volume of cylinders, cones, and spheres. 8.7B- Use previous knowledge of surface area to make connections to the formulas for lateral and total surface area and determine solutions for problems involving	Category 3: Volume and Surface Area Students will find the volume of cylinders, cones, and spheres, and the surface area of rectangular prisms, triangular prisms, and cylinders. 8.7A Solve problems involving the volume of cylinders, cones, and spheres. 8.78- Use previous knowledge of surface area to make connections to the formulas for lateral and total surface area and determine solutions for problems involving		

Freeport Intermediate
Plan of Action based on Benchmark Data
STAAR Math 8
Week 1

Language Objective:

I can write about and solve problems involving one-variable equations situations, total cost of repaying a loan, slope and y-intercept in proportional and non-proportional situations, direct variation, function representations, scatterplots, transformational geometry, and the
Pythagorean Theorem.

Freeport Intermediate
Plan of Action based on Benchmark Data
STAAR Math 8
Week 1

Language Objective:
I can write about and solve problems involving one-variable equations situations, total cost of repaying a loan, slope and y-intercept in proportional and non-proportional situations, direct variation, function representations, scatterplots, transformational geometry, and the Pythagorean Theorem.

What is our plan for the TEKS in which we regressed in?

Start Date: 2/12/18	Monday February 19	Tuesday February 20	Wednesday February 21	Thursday February 22	Friday February 23	ESL Accds: (Woodley)	SPED Accommodations: (Shirtum)
Priority TEKS with overall \% BASED ON MOCK STAAR DATA 8.7B-26.77\%, 8.7C-35.61\% 8.3C-39.14\% 8.8C-41.25\% 8.10C-45.62\% 8.12D-50.76\% 8.5G-52.02\% 8.4C-53.37\% 8.51-53.54\% 8.5D-54.21\% 8.7A-55.72\% 8.2D-57.24\%	STUDENT HOLIDAY	Category 3: Volume and Surface Area THIS DAY WILL BE USED AS A RETEACH/TEST FOR ANY STUDENT THAT MAY HAVE FAILED THE UNIT 9 TEST. Students will find the volume of cylinders, cones, and spheres, and the surface area of rectangular prisms, triangular prisms, and cylinders. 8.7A Solve problems involving the volume of cylinders, cones, and spheres.	Category 1: Ordering Real Numbers Students will order real numbers in a ascending and descending order using a number line. 8.2D Order a set of real numbers arising from mathematical and real-world contexts. 1. Ordering activities HOMEWORK: Complete activities not finished in class and work on ALEKS Pie.	Category 2: Functions Students will identify functions using sets of ordered pairs, tables, graphs and mappings. 8.5G Identify functions using sets of ordered pairs, tables, mappings and graphs. 1. Functions Activities. HOMEWORK: Complete activities not finished in class and work on ALEKS Pie..	ALEKS Students will work through problems in their individual ALEKS Pie to increase their completed percentage. HOMEWORK: Work on ALEKS Pie.		

Freeport Intermediate
Plan of Action based on Benchmark Data
STAAR Math 8
Week 1

Language Objective:
I can write about and solve problems involving one-variable equations situations, total cost of repaying a loan, slope and y-intercept in proportional and non-proportional situations, direct variation, function representations,
scatterplots, transformational geometry, and the Pythagorean Theorem.

Freeport Intermediate
Plan of Action based on Benchmark Data
STAAR Math 8
Week 1

Language Objective:
I can write about and solve problems involving one-variable equations situations, total cost of repaying a loan, slope and y-intercept in proportional and non-proportional situations, direct variation, function representations, scatterplots, transformational geometry, and the Pythagorean Theorem.

What is our plan for the TEKS in which we regressed in?

Start Date: $2 / 12 / 18$	Monday February 26	Tuesday February 27	Wednesday February 28	Thursday March 1	Friday March 2	ESL Accds: (Woodley)	SPED Accommodations: (Shirtum)
Priority TEKS with overall \% BASED ON MOCK STAAR DATA 8.7B-26.77\%, 8.7C-35.61\% 8.3C-39.14\% 8.8C-41.25\% 8.10C-45.62\% 8.12D-50.76\% 8.5G-52.02\% 8.4C-53.37\%	Category 2: Model and solve equations Students will solve equations for a specific variable. 8.8C Model and solve one-variable equations with variables on both sides of the equal sign that represent mathematical	8TH GRADE PSAT	Category 2: Model and solve equations Students will solve equations for a specific variable. 8.8C Model and solve one-variable equations with variables on both sides of the equal sign that represent mathematical	Category 4: Simple and Compound Interest Students will use the Simple and Compound Interest Formulas to find earnings. 8.7A Calculate and compare simple interest and compound	Sam Houston hallway College Trip Category 4: Simple and Compound Interest Students will use the Simple and Compound Interest Formulas to find earnings. 8.7A Calculate and compare simple		

Freeport Intermediate
Plan of Action based on Benchmark Data
STAAR Math 8
Week 1

Language Objective:

I can write about and solve problems involving one-variable equations situations, total cost of repaying a loan, slope and y-intercept in proportional and non-proportional situations, direct variation, function representations, scatterplots, transformational geometry, and the Pythagorean Theorem.

Freeport Intermediate
Plan of Action based on Benchmark Data
STAAR Math 8
Week 1

Language Objective:
I can write about and solve problems involving one-variable equations situations, total cost of repaying a loan, slope and y-intercept in proportional and non-proportional situations, direct variation, function representations, scatterplots, transformational geometry, and the Pythagorean Theorem.

What is our plan for the TEKS in which we regressed in?

Start Date: 2/12/18	Monday March 5	Tuesday March 6	Wednesday March 7	Thursday March 8	Friday March 9	ESL Accds: (Woodley)	SPED Accommodations: (Shirtum)
Priority TEKS with overall \% BASED ON MOCK STAAR DATA 8.7B-26.77\%, 8.7C-35.61\% 8.3C-39.14\% 8.8C-41.25\% 8.10C-45.62\% 8.12D-50.76\% 8.5G-52.02\% 8.4C-53.37\% 8.5I-53.54\% 8.5D-54.21\% 8.7A-55.72\% 8.2D-57.24\%	Category 2: Slope and Y-Intercept 8.4B- graph proportional relationships, interpreting the unit rate as slope of the line that models the relationship. 8.4C-use data from a table or graph to determine the rate of change or slope and y-intercept in mathematical and real world problems. 8.51- write an equation in the form $\mathbf{y}=\mathrm{mx}+\mathrm{b}$ to model a linear relationship between two quantities using	Category 2: Slope and Y-Intercept 8.4B- graph proportional relationships, interpreting the unit rate as slope of the line that models the relationship. 8.4C-use data from a table or graph to determine the rate of change or slope and y-intercept in mathematical and real world problems. 8.51- write an equation in the form $y=m x+b$ to model a linear relationship between two quantities using	Category 2: Slope and Y-Intercept 8.4B- graph proportional relationships, interpreting the unit rate as slope of the line that models the relationship. 8.4C-use data from a table or graph to determine the rate of change or slope and y-intercept in mathematical and real world problems. 8.51- write an equation in the form $y=m x+b$ to model a linear relationship between two quantities using	Category 2: Slope and Y-Intercept 8.4B- graph proportional relationships, interpreting the unit rate as slope of the line that models the relationship. 8.4C-use data from a table or graph to determine the rate of change or slope and y-intercept in mathematical and real world problems. 8.51- write an equation in the form $\mathbf{y}=\mathrm{mx}+\mathrm{b}$ to model a linear relationship between two quantities using	$\begin{array}{\|l} \text { UT BC TRIP } \\ \text { ALEKS } \end{array}$		

Freeport Intermediate
Plan of Action based on Benchmark Data
STAAR Math 8
Week 1

Language Objective:
I can write about and solve problems involving one-variable equations situations, total cost of repaying a loan, slope and y-intercept in proportional and non-proportional situations, direct variation, function representations, scatterplots, transformational geometry, and the Pythagorean Theorem.

Freeport Intermediate
Plan of Action based on Benchmark Data
STAAR Math 8
Week 1

Language Objective:

I can write about and solve problems involving one-variable equations situations, total cost of repaying a loan, slope and y-intercept in proportional and non-proportional situations, direct variation, function representations,
scatterplots, transformational geometry, and the Pythagorean Theorem.

Assessment Date:	March 29, 2018					
Progress:	$\begin{aligned} & \hline 8.7 \mathrm{~A} \\ & 8.7 \mathrm{~B} \end{aligned}$	$\begin{aligned} & 8.7 \mathrm{~A} \\ & 8.7 \mathrm{~B} \end{aligned}$	$\begin{aligned} & \hline 8.7 \mathrm{~A} \\ & 8.7 \mathrm{~B} \end{aligned}$	$\begin{aligned} & \hline 8.7 \mathrm{~A} \\ & 8.7 \mathrm{~B} \end{aligned}$	$\begin{aligned} & 8.7 \mathrm{~A} \\ & 8.7 \mathrm{~B} \end{aligned}$	
Tutoring Groups: Tier I: after school Tier II: after school Tier II: Prime Time Tier III: Prime Time	```Tier I: (anyone w/o a label) 1. 2. 3. 4. 5. 7. 8.```	```Tier II (Bubble w/o a label) 1. 2. 3. 4. 5. 7. 8```	```Tier II (ESL, 504) 1. 2. 3. 4. 5. 7. 8```	```Tier III (SPED) 1. 2. 3. 4. 5. 7. 8```		

What is our plan for the TEKS in which we regressed in?

Start Date: 2/12/18	Monday March 19	Tuesday March 20	Wednesday March 21	Thursday March 22	Friday March 23	ESL Accds: (Woodley)	SPED Accommodations: (Shirtum)
Priority TEKS with overall \% BASED ON MOCK STAAR DATA 8.7B-26.77\%, 8.7C-35.61\% 8.3C-39.14\% 8.8C-41.25\%	Category 3: Transformations on the coordinate plane Students determine the effects of figures on a coordinate plane when given	Category 3: Transformations on the coordinate plane Students determine the effects of figures on a coordinate plane when given	Science Mock STAAR	Category 3: Transformations on the coordinate plane Students determine the effects of figures on a coordinate plane when given	Category 3: Pythagorean Theorem Students will find the missing length of a right triangle using the Pythagorean Theorem.		

Freeport Intermediate
Plan of Action based on Benchmark Data
STAAR Math 8
Week 1

Language Objective:

I can write about and solve problems involving one-variable equations situations, total cost of repaying a loan, slope and y-intercept in proportional and non-proportional situations, direct variation, function representations, scatterplots, transformational geometry, and the
Pythagorean Theorem.

Freeport Intermediate
Plan of Action based on Benchmark Data
STAAR Math 8
Week 1

Language Objective:

I can write about and solve problems involving one-variable equations situations, total cost of repaying a loan, slope and y-intercept in proportional and non-proportional situations, direct variation, function representations, scatterplots, transformational geometry, and the Pythagorean Theorem.

What is our plan for the TEKS in which we regressed in?

Start Date: 2/12/18	Monday March 26	Tuesday March 27	Wednesday March 28	Thursday March 29	Friday March 30	ESL Accds: (Woodley)

Freeport Intermediate
Plan of Action based on Benchmark Data
STAAR Math 8
Week 1

Language Objective:
I can write about and solve problems involving one-variable equations situations, total cost of repaying a loan, slope and y-intercept in proportional and non-proportional situations, direct variation, function representations, scatterplots, transformational geometry, and the Pythagorean Theorem.

Priority TEKS with overall \% BASED ON MOCK STAAR DATA 8.7B-26.77\%, 8.7C-35.61\% 8.3C-39.14\% 8.8C-41.25\% 8.10C-45.62\% 8.12D-50.76\% 8.5G-52.02\% 8.4C-53.37\% 8.51-53.54\% 8.5D-54.21\% 8.7A-55.72\% 8.2D-57.24\%	Category 3: Pythagorean Theorem Students will find the missing length of a right triangle using the Pythagorean Theorem. 8.7B- Use previous knowledge of surface area to make connections to the formulas for lateral and total surface area and determine solutions for problems involving rectangular prisms, triangular prisms, and cylinders. 1. Volume and Surface Area Activities. HOMEWORK: Complete activities not finished in class and work on ALEKS Pie.	Category 3: Volume Students will find the volume of cylinders, cones, and spheres, and the surface area of rectangular prisms, triangular prisms, and cylinders. 8.7A Solve problems involving the volume of cylinders, cones, and spheres. 8.7B- Use previous knowledge of surface area to make connections to the formulas for lateral and total surface area and determine solutions for problems involving rectangular prisms, triangular prisms, and cylinders.	Category ${ }^{3:}$ Surface Area Students will find the volume of cylinders, cones, and spheres, and the surface area of rectangular prisms, triangular prisms, and cylinders. 8.7A Solve problems involving the volume of cylinders, cones, and spheres. 8.7B- Use previous knowledge of surface area to make connections to the formulas for lateral and total surface area and determine solutions for problems involving rectangular prisms, triangular prisms, and cylinders.	UNIT 10 MAKING CONNECTIONS TEST Students will answer question on the Making Connections unit test. WE WILL USE THE DATA FROM THIS TEST TO HELP US FOCUS OUR REVIEW FOR THE REMAINDER OF OUR DAYS UNTIL STAAR. HOMEWORK: Complete activities not finished in class and work on ALEKS Pie.	GOOD FRIDAY		

Freeport Intermediate
Plan of Action based on Benchmark Data
STAAR Math 8
Week 1

Language Objective:

I can write about and solve problems involving one-variable equations situations, total cost of repaying a loan, slope and y-intercept in proportional and non-proportional situations, direct variation, function representations,
scatterplots, transformational geometry, and the
Pythagorean Theorem.

What is our plan for the TEKS in which we regressed in?

Start Date: 2/12/18	Monday April 2	Tuesday April 3	Wednesday April 4	Thursday April 5	Friday Aprill 6	ESL Accds: (Woodley)

Freeport Intermediate
Plan of Action based on Benchmark Data
STAAR Math 8
Week 1

Language Objective:

I can write about and solve problems involving one-variable equations situations, total cost of repaying a loan, slope and y-intercept in proportional and non-proportional situations, direct variation, function representations, scatterplots, transformational geometry, and the
Pythagorean Theorem.

Priority TEKS with overall \% BASED ON MOCK STAAR DATA 8.7B-26.77\%, 8.7C-35.61\% 8.3C-39.14\% 8.8C-41.25\% 8.10C-45.62\% 8.12D-50.76\% 8.5G-52.02\% 8.4C-53.37\% 8.51-53.54\% 8.5D-54.21\% 8.7A-55.72\% 8.2D-57.24\%	Category 3: Volume and Surface Area Students will 8.7A Solve problems involving the volume of cylinders, cones, and spheres. 8.7B- Use previous knowledge of surface area to make connections to the formulas for lateral and total surface area and determine solutions for problems involving rectangular prisms, triangular prisms, and cylinders. 1. Volume and Surface Area Activities. HOMEWORK: Complete activities not finished in class and work on ALEKS Pie.	Category 3: Volume and Surface Area Students will 8.7A Solve problems involving the volume of cylinders, cones, and spheres. 8.7B- Use previous knowledge of surface area to make connections to the formulas for lateral and total surface area and determine solutions for problems involving rectangular prisms, triangular prisms, and cylinders. 1. Volume and Surface Area Activities. HOMEWORK: Complete activities not finished in class and work on ALEKS Pie.	HISTORY MOCK STAAR	Category 3: Volume and Surface Area Students will 8.7A Solve problems involving the volume of cylinders, cones, and spheres. 8.7B- Use previous knowledge of surface area to make connections to the formulas for lateral and total surface area and determine solutions for problems involving rectangular prisms, triangular prisms, and cylinders. 1. Volume and Surface Area Activities. HOMEWORK: Complete activities not finished in class and work on ALEKS Pie.	Category 3: Volume and Surface Area Students will 8.7A Solve problems involving the volume of cylinders, cones, and spheres. 8.7B-Use previous knowledge of surface area to make connections to the formulas for lateral and total surface area and determine solutions for problems involving rectangular prisms, triangular prisms, and cylinders. 1. Volume and Surface Area Activities. HOMEWORK: Complete activities not finished in class and work on ALEKS Pie.

Freeport Intermediate
Plan of Action based on Benchmark Data
STAAR Math 8
Week 1

Language Objective:

I can write about and solve problems involving one-variable equations situations, total cost of repaying a loan, slope and y-intercept in proportional and non-proportional situations, direct variation, function representations,
scatterplots, transformational geometry, and the Pythagorean Theorem.

Resources:	TBD	TBD	TBD	TBD	TBD		
End Date:	February 16, 2018						
Assessment Date:	March 29, 2018						
Progress:	$\begin{aligned} & \text { 8.7A } \\ & 8.7 B \end{aligned}$	$\begin{aligned} & \hline 8.7 \mathrm{~A} \\ & 8.7 \mathrm{~B} \end{aligned}$	$\begin{array}{\|l} \hline 8.7 \mathrm{~A} \\ 8.7 \mathrm{~B} \end{array}$	$\begin{array}{\|l} \hline 8.7 A \\ 8.7 B \end{array}$			
Tutoring Groups: Tier I: after school Tier II: after school Tier II: Prime Time Tier III: Prime Time	```Tier I: (anyone w/o a label) 1. 2. 3. 4. 5. 7. 8.```	```Tier II (Bubble w/o a label) 1. 2. 3. 4. 5. 7. 8```	```Tier II (ESL, 504) 1. 2. 3. 4. 5. 7. 8```	```Tier III (SPED) 1. 2. 3. 4. 5. 7. 8```			

What is our plan for the TEKS in which we regressed in?

Start Date: 2/12/18	Monday April 9	Tuesday April 10	Wednesday	Thursday	Friday	ESL Accds: (Woodley)	SPED Accommodations: (Shirtum)
Priority TEKS with overall \% BASED ON MOCK STAAR DATA	Category 3: Volume and Surface Area Students will find play kahoot and quizlet to have a	1. Volume and Surface Area Activities. HOMEWORK: Complete activities	Category 3: Volume and Surface Area Students will find the volume of cylinders, cones,	Category 3: Volume and Surface Area Students will find the volume of cylinders, cones,	Category 3: Volume and Surface Area Students will find the volume of cylinders, cones,		

Freeport Intermediate
Plan of Action based on Benchmark Data
STAAR Math 8
Week 1

Language Objective:

I can write about and solve problems involving one-variable equations situations, total cost of repaying a loan, slope and y-intercept in proportional and non-proportional situations, direct variation, function representations, scatterplots, transformational geometry, and the
Pythagorean Theorem.

8.7B-26.77\%, 8.7C-35.61\% 8.3C-39.14\% 8.8C-41.25\% 8.10C-45.62\% 8.12D-50.76\% 8.5G-52.02\% 8.4C-53.37\% 8.51-53.54\% 8.5D-54.21\% 8.7A-55.72\% 8.2D-57.24\%	fun review on our last day before the STAAR. WE WILL DISCUSS WITH OUR STUDENTS WHY IT 15 IMPORTANT TO STAY ACWARE THE WHILE TESTING AND USE STRATEGIES TO SOLVE PROBLEMS. HOMEWORK: Complete activities not finished in class and work on ALEKS Pie.	not finished in class and work on ALEKS Pie.	and spheres, and the surface area of rectangular prisms, triangular prisms, and cylinders. 8.7A Solve problems involving the volume of cylinders, cones, and spheres. 8.7B- Use previous knowledge of surface area to make connections to the formulas for lateral and total surface area and determine solutions for problems involving rectangular prisms, triangular prisms, and cylinders. 1. Volume and Surface Area Activities.	and spheres, and the surface area of rectangular prisms, triangular prisms, and cylinders. 8.7A Solve problems involving the volume of cylinders, cones, and spheres. 8.7B- Use previous knowledge of surface area to make connections to the formulas for lateral and total surface area and determine solutions for problems involving rectangular prisms, triangular prisms, and cylinders. 1. Volume and Surface Area Activities.

and spheres, and
the surface area
of rectangular
prisms, triangular
prisms, and
cylinders.
8.7A
Solve problems
involving the
volume of
cylinders, cones,
and spheres.
8.7B- Use
previous
knowledge of
surface area to
make
connections to
the formulas for
lateral and total
surface area and
determine
solutions for
problems
involving
rectangular
prisms,
triangular
prisms, and
cylinders.

1. Volume and
Surface Area
Activities.
HomEWork:
Complete activities
not finished in class not finished in class

Freeport Intermediate
Plan of Action based on Benchmark Data
STAAR Math 8
Week 1

Language Objective:

I can write about and solve problems involving one-variable equations situations, total cost of repaying a loan, slope and y-intercept in proportional and non-proportional situations, direct variation, function representations,
scatterplots, transformational geometry, and the
Pythagorean Theorem.

What is our plan for the TEKS in which we regressed in?

